AtCoder Beginner Contest 014 D - 閉路
解法
lca 使ってやるだけ。
木構造では2つの頂点の距離が一意に決まるのが本質的?
class Tree { public: Tree(int V, int root) : V(V), root(root) { T.resize(V); for (int i = 0; i < MAXLOGV; i++) parent[i].resize(V); depth.resize(V); } // uとvをつなぐ // lcaを求めることが主目的なので無向グラフとしている void unite(int u, int v) { T[u].push_back(v); T[v].push_back(u); } // initする // コンストラクタだけじゃなくてこれも呼ばないとlcaが求められないぞ void init() { dfs(root, -1, 0); for (int k = 0; k+1 < MAXLOGV; k++) { for (int v = 0; v < V; v++) { if (parent[k][v] < 0) parent[k+1][v] = -1; else parent[k+1][v] = parent[k][parent[k][v]]; } } } // uとvのlcaを求める int lca(int u, int v) const { if (depth[u] > depth[v]) swap(u, v); for (int k = 0; k < MAXLOGV; k++) { if ((depth[v] - depth[u])>>k & 1) { v = parent[k][v]; } } if (u == v) return u; for (int k = MAXLOGV-1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } // uとvの距離を求める // edgeを定義しないといけない時はこれじゃダメ int dist(int u, int v) const { int p = lca(u, v); return (depth[u]-depth[p]) + (depth[v]-depth[p]); } void dfs(int v, int p, int d) { parent[0][v] = p; depth[v] = d; for (int next : T[v]) { if (next != p) dfs(next, v, d+1); } } static const int MAXLOGV = 25; // グラフの隣接リスト表現 vector<vector<int> > T; // 頂点の数 int V; // 根ノードの番号 int root; // 親ノード vector<int> parent[MAXLOGV]; // 根からの深さ vector<int> depth; }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; Tree tree(n, 0); for (int i = 0; i < n-1; i++) { int x, y; cin >> x >> y; x--; y--; tree.unite(x, y); } tree.init(); int Q; cin >> Q; while (Q--) { int a, b; cin >> a >> b; a--; b--; cout << tree.dist(a, b) + 1 << endl; } return 0; }